Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cancer ; 126(22): 4895-4904, 2020 11 15.
Article in English | MEDLINE | ID: covidwho-704955

ABSTRACT

BACKGROUND: In the wake of the coronavirus disease 2019 (COVID-19) pandemic, access to surgical care for patients with head and neck cancer (HNC) is limited and unpredictable. Determining which patients should be prioritized is inherently subjective and difficult to assess. The authors have proposed an algorithm to fairly and consistently triage patients and mitigate the risk of adverse outcomes. METHODS: Two separate expert panels, a consensus panel (11 participants) and a validation panel (15 participants), were constructed among international HNC surgeons. Using a modified Delphi process and RAND Corporation/University of California at Los Angeles methodology with 4 consensus rounds and 2 meetings, groupings of high-priority, intermediate-priority, and low-priority indications for surgery were established and subdivided. A point-based scoring algorithm was developed, the Surgical Prioritization and Ranking Tool and Navigation Aid for Head and Neck Cancer (SPARTAN-HN). Agreement was measured during consensus and for algorithm scoring using the Krippendorff alpha. Rankings from the algorithm were compared with expert rankings of 12 case vignettes using the Spearman rank correlation coefficient. RESULTS: A total of 62 indications for surgical priority were rated. Weights for each indication ranged from -4 to +4 (scale range; -17 to 20). The response rate for the validation exercise was 100%. The SPARTAN-HN demonstrated excellent agreement and correlation with expert rankings (Krippendorff alpha, .91 [95% CI, 0.88-0.93]; and rho, 0.81 [95% CI, 0.45-0.95]). CONCLUSIONS: The SPARTAN-HN surgical prioritization algorithm consistently stratifies patients requiring HNC surgical care in the COVID-19 era. Formal evaluation and implementation are required. LAY SUMMARY: Many countries have enacted strict rules regarding the use of hospital resources during the coronavirus disease 2019 (COVID-19) pandemic. Facing delays in surgery, patients may experience worse functional outcomes, stage migration, and eventual inoperability. Treatment prioritization tools have shown benefit in helping to triage patients equitably with minimal provider cognitive burden. The current study sought to develop what to the authors' knowledge is the first cancer-specific surgical prioritization tool for use in the COVID-19 era, the Surgical Prioritization and Ranking Tool and Navigation Aid for Head and Neck Cancer (SPARTAN-HN). This algorithm consistently stratifies patients requiring head and neck cancer surgery in the COVID-19 era and provides evidence for the initial uptake of the SPARTAN-HN.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Head and Neck Neoplasms/surgery , Health Resources , Pneumonia, Viral/epidemiology , Triage/methods , Algorithms , COVID-19 , Clinical Decision-Making , Consensus , Coronavirus Infections/virology , Humans , International Cooperation , Pandemics , Pneumonia, Viral/virology , Reproducibility of Results , Research Design , SARS-CoV-2 , Surgeons
3.
Cancer ; 126(15): 3426-3437, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-457377

ABSTRACT

BACKGROUND: The objective of this study was to identify a subgroup of patients with head and neck squamous cell carcinoma (HNSCC) who might be suitable for hypofractionated radiotherapy (RT-hypo) during the COVID-19 pandemic. METHODS: HNSCC cases (oropharynx/larynx/hypopharynx) treated with definitive RT-hypo (60 Gy in 25 fractions over 5 weeks), moderately accelerated radiotherapy (RT-acc) alone (70 Gy in 35 fractions over 6 weeks), or concurrent chemoradiotherapy (CCRT) during 2005-2017 were included. Locoregional control (LRC) and distant control (DC) after RT-hypo, RT-acc, and CCRT were compared for various subgroups. RESULTS: The study identified 994 human papillomavirus-positive (HPV+) oropharyngeal squamous cell carcinoma cases (with 61, 254, and 679 receiving RT-hypo, RT-acc, and CCRT, respectively) and 1045 HPV- HNSCC cases (with 263, 451, and 331 receiving RT-hypo, RT-acc, and CCRT, respectively). The CCRT cohort had higher T/N categories, whereas the radiotherapy-alone patients were older. The median follow-up was 4.6 years. RT-hypo, RT-acc, and CCRT produced comparable 3-year LRC and DC for HPV+ T1-2N0-N2a disease (seventh edition of the TNM system [TNM-7]; LRC, 94%, 100%, and 94%; P = .769; DC, 94%, 100%, and 94%; P = .272), T1-T2N2b disease (LRC, 90%, 94%, and 97%; P = .445; DC, 100%, 96%, and 95%; P = .697), and T1-2N2c/T3N0-N2c disease (LRC, 89%, 93%, and 95%; P = .494; DC, 89%, 90%, and 87%; P = .838). Although LRC was also similar for T4/N3 disease (78%, 84%, and 88%; P = .677), DC was significantly lower with RT-hypo or RT-acc versus CCRT (67%, 65%, and 87%; P = .005). For HPV- HNSCC, 3-year LRC and DC were similar with RT-hypo, RT-acc, and CCRT in stages I and II (LRC, 85%, 89%, and 100%; P = .320; DC, 99%, 98%, and 100%; P = .446); however, RT-hypo and RT-acc had significantly lower LRC in stage III (76%, 69%, and 91%; P = .006), whereas DC rates were similar (92%, 85%, and 90%; P = .410). Lower LRC in stage III predominated in patients with laryngeal squamous cell carcinoma receiving RT-acc (62%) but not RT-hypo (80%) or CCRT (92%; RT-hypo vs CCRT: P = .270; RT-acc vs CCRT: P = .004). CCRT had numerically higher LRC in comparison with RT-hypo or RT-acc in stage IV (73%, 65%, and 66%; P = .336). CONCLUSIONS: It is proposed that RT-hypo be considered in place of CCRT for HPV+ T1-T3N0-N2c (TNM-7) HNSCCs, HPV- T1-T2N0 HNSCCs, and select stage III HNSCCs during the COVID-19 outbreak.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Radiation Dose Hypofractionation , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Adult , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/epidemiology , Female , Follow-Up Studies , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/virology , Humans , Male , Middle Aged , Neoplasm Recurrence, Local , Oropharyngeal Neoplasms/drug therapy , Oropharyngeal Neoplasms/radiotherapy , Oropharyngeal Neoplasms/virology , Pandemics , Papillomavirus Infections/complications , Pneumonia, Viral/epidemiology , Radiotherapy, Intensity-Modulated , Risk Factors , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/virology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL